
Java Programming –
JDBC - MS Access

Arthur Hoskey, Ph.D.
Farmingdale State College

Computer Systems Department

© 2021 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 MS Access Database
 Java Database Connectivity (JDBC)

© 2021 Arthur Hoskey. All 
rights reserved.



Microsoft Access Database

 Microsoft Access is a relational DB.

 Part of Microsoft Office.

 Used for small desktop databases.

 Easy to use.

© 2021 Arthur Hoskey. All 
rights reserved.



Create a Database in Access

Microsoft Access – Create Database

 Create a blank database. The database file should be 
located in the NetBeans project directory for easiest 
access. Give the DB an appropriate name. We will use 
Persons for this example. The DB filename will have a 
.accdb extension.

© 2021 Arthur Hoskey. All 
rights reserved.



Create a Table and Fields

Microsoft Access – Create Table

 Go to Create|Table to add a table to the DB. You will see a 
new table appear in the main part of the screen (it will 
have a default name such as Table 1).

 The table's fields are listed across the top.

 You will see an ID field already in the table.

 Add Field. Press the "Click to Add" dropdown (second 
column in table). Choose the datatype for the field. Once 
you choose the datatype it will automatically let you edit 
the field name. You can try adding columns for first, last, 
and age.

 Once all fields are created you can add data directly into 
the table. Try putting a few rows of data in the table.

 Save. Go to File|Save. It will ask you to enter a name for 
the table. You can name it Persons for this example.

© 2021 Arthur Hoskey. All 
rights reserved.



Java Database Connectivity 
(JDBC)

Java Database Connectivity (JDBC)

 JDBC defines a standard API to access a relational 
database from a Java application.

 You can access different databases using JDBC.

 The JDBC code you use in your application is basically the 
same no matter what type of relational database you are 
accessing.

© 2021 Arthur Hoskey. All 
rights reserved.

Java Application

MS Access 
Database

JDBC

Oracle 
Database



Maven MS Access Dependencies

 Add the following two dependencies to pom.xml (Maven file).

 Add as children of <dependencies> (add <dependencies> if you need to).

<dependency>

<groupId>com.healthmarketscience.jackcess</groupId>

<artifactId>jackcess</artifactId>

<version>4.0.5</version>

</dependency>

<dependency>

<groupId>net.sf.ucanaccess</groupId>

<artifactId>ucanaccess</artifactId>

<version>5.0.1</version>

</dependency>

Link for dependency:

https://search.maven.org/artifact/net.sf.ucanaccess/ucanaccess

© 2021 Arthur Hoskey. All 
rights reserved.

Note: If Maven does not automatically 

download the dependencies, IntelliJ will 

not give you the option to choose 

"Import" when it does not recognize class 

names. Do the following:

Go to the Maven tab (on right). Press 

Reload All Maven Projects in the toolbar.

First button is for Reload

Dependency for JDBC 

Driver for MS Access

Dependency for creating MS 

Access files using Java code

https://mvnrepository.com/artifact/org.apache.derby/derbyclient/10.12.1.1


Update module-info.java

 Java Module. Higher level grouping compared to packages.

 module-info.java contains module information (what other modules it requires 
to run, which packages within this module are allowed to be used by other 
modules).

 module-info.java is located in the src/Java directory.

 If your project has a module-info.java file, then you must add some requires 
statements.

 An IntelliJ JavaFX project is automatically setup as a module, so you will need 
to modify the module-info.java file in this case.

module <your package name will be here> {

// Other requires are here

requires java.sql;

requires com.healthmarketscience.jackcess;

// Other code here
}

© 2021 Arthur Hoskey. All 
rights reserved.

Module Dependency

This module requires the 

com.healthmarketscience.jackcess 

module (need this to use Jackcess)

Module Dependency

This module requires the java.sql 

module (need this to use JDBC)



Java – Create a Database using 
Code

 Use the following code to create a DB in code.

 It wil only create the DB file if it does not already exist.

String dbFilePath = ".//Persons.accdb";

String databaseURL = "jdbc:ucanaccess://" + dbFilePath;

File dbFile = new File(dbFilePath);

if (!dbFile.exists()) {

try (Database db = 

DatabaseBuilder.create(Database.FileFormat.V2010, new File(dbFilePath))) {

System.out.println("The database file has been created.");

} catch (IOException ioe) {

ioe.printStackTrace(System.err);

}

}

© 2021 Arthur Hoskey. All 
rights reserved.

Call DatabaseBuilder.create to 

create the db file

Do not create if the file already exists



Java – Create a JDBC Connection

 Use the following code to open a JDBC connection to your 
MS Access DB:

 JDBC code requires imports from SQL lib. Here is the 
connection import: import java.sql.Connection;

String databaseURL = "";

Connection conn = null;

try {

databaseURL = "jdbc:ucanaccess://.//Persons.accdb";

conn = DriverManager.getConnection(databaseURL);

} catch (SQLException ex) {

Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);

}

© 2021 Arthur Hoskey. All 
rights reserved.

Open connection 

to the DB

Persons.accdb is the database 

filename (assumes it is stored in the 

project directory)



Java – Create a Table in a 
Database using Code

 Use the following code to create a table in a DB using code.
try {

String dbFilePath = ".//Persons.accdb";

String databaseURL = "jdbc:ucanaccess://" + dbFilePath;

Connection conn = DriverManager.getConnection(databaseURL);

String sql;

sql = "CREATE TABLE Persons (First nvarchar(255), Last nvarchar(255), Age INT)";

Statement createTableStatement = conn.createStatement();

createTableStatement.execute(sql);

conn.commit();

} catch (SQLException sqlException) {

sqlException.printStackTrace();

}

© 2021 Arthur Hoskey. All 
rights reserved.

Create a Statement 

instance and run the 

SQL create

Get connection 

to db

Put SQL create 

in a string



Java – Drop a Table from a 
Database using Code

 Use the following code to drop a table from a DB using 
code.

try {

String dbFilePath = ".//Persons.accdb";

String databaseURL = "jdbc:ucanaccess://" + dbFilePath;

Connection conn = DriverManager.getConnection(databaseURL);

String sql;

sql = "DROP TABLE Persons";

Statement createTableStatement = conn.createStatement();

createTableStatement.execute(sql);

conn.commit();

} catch (SQLException sqlException) {

sqlException.printStackTrace();

}

© 2021 Arthur Hoskey. All 
rights reserved.

Create a Statement 

instance and run the 

SQL drop

Get connection 

to db

Put SQL drop 

in a string



Java – Query the DB using JDBC

 The following code queries the MS Access DB using an 
already opened JDBC connection (assumes that a table 
named Persons exists in the DB):

try {

String tableName = "Persons";

Statement stmt = conn.createStatement();

ResultSet result = stmt.executeQuery("select * from " + tableName);

while (result.next()) {

int id = result.getInt("ID");

String first = result.getString("First");

String last = result.getString("Last");

int age = result.getInt("Age");

System.out.printf("%d %s %s %d\n", id, first, last, age);

}

} catch (SQLException except) {

except.printStackTrace();

}

© 2021 Arthur Hoskey. All 
rights reserved.

Get data for each column and 

store in variables

ResultSet contains all rows 

of data from the DB

Loop through the ResultSet



Java –JDBC Insert Using a 
PreparedStatement

 The PreparedStatement class makes it easy to put values 
into a statement.

String sql = "INSERT INTO Persons (First, Last, Age) VALUES (?, ?, ?)";

PreparedStatement preparedStatement = null;

try {

preparedStatement = conn.prepareStatement(sql);

preparedStatement.setString(1, first);

preparedStatement.setString(2, last);

preparedStatement.setInt(3, age);

preparedStatement.executeUpdate();

} catch (SQLException e) {

throw new RuntimeException(e);

}

© 2021 Arthur Hoskey. All 
rights reserved.

The three ? characters will be filled with data by the 

PreparedStatement class

Replace the first ? In the SQL 

string with data from the first 

variable

Replace the third ? In the SQL string 

with data from the age variable. It uses 

setInt since age is an int.

Assumes that conn is a valid 

connection to the database



Java –JDBC Delete All Table Data

 You can delete all rows from a table in a database.

String sql = "DELETE FROM Persons";

PreparedStatement preparedStatement = null;

try {

preparedStatement = conn.prepareStatement(sql);

int rowsDeleted = preparedStatement.executeUpdate();

} catch (SQLException e) {

throw new RuntimeException(e);

}

© 2021 Arthur Hoskey. All 
rights reserved.

Create SQL string to delete 

all records from the table

Run the delete statement. It will 

return the number of rows that 

were deleted.

Assumes that conn is 

a valid connection to 

the database



Java –JDBC Delete Single Item

 You can delete rows that match certain values from a table 
in a database.

String first = "Mateo";

String last = "Lopez";

String sql = "DELETE FROM Persons WHERE first=? AND last=? ";

PreparedStatement preparedStatement = null;

try {

preparedStatement = conn.prepareStatement(sql);

preparedStatement.setString(1, first);

preparedStatement.setString(2, last);

int rowsDeleted = preparedStatement.executeUpdate();

} catch (SQLException e) {

throw new RuntimeException(e);

}

© 2021 Arthur Hoskey. All 
rights reserved.

Deletes records that match 

the given first and last 

names

Run the delete statement. It 

will return the number of 

rows that were deleted.

Assumes that conn is a valid 

connection to the database

Deleting records that 

have "Mateo" in first 

and "Lopez" in last



End of Slides

 End of Slides

© 2021 Arthur Hoskey. All 
rights reserved.


	Slide 1: Java Programming – JDBC - MS Access
	Slide 2: Today’s Lecture
	Slide 3: Microsoft Access Database
	Slide 4: Create a Database in Access
	Slide 5: Create a Table and Fields
	Slide 6: Java Database Connectivity (JDBC)
	Slide 7: Maven MS Access Dependencies
	Slide 8: Update module-info.java
	Slide 9: Java – Create a Database using Code
	Slide 10: Java – Create a JDBC Connection
	Slide 11: Java – Create a Table in a Database using Code
	Slide 12: Java – Drop a Table from a Database using Code
	Slide 13: Java – Query the DB using JDBC
	Slide 14: Java –JDBC Insert Using a PreparedStatement
	Slide 15: Java –JDBC Delete All Table Data
	Slide 16: Java –JDBC Delete Single Item
	Slide 17: End of Slides

